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Testing Model-View Implementations

● Designing testable code

● High-level Model-View design 

● Test-drivers and mock objects

● Unit test execution 

● KDE ItemViews library
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● Designing testable code

– Motivation

– Abstraction
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● High-level Model-View design

– Separation of concerns
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● Test drivers and mock objects

– Real-world model view
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● Test drivers and mock objects

– Real-world model view

– Dependency injection
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Test driverTest driver Fake ModelFake ModelProxyProxy

● Test drivers and mock objects

– Real-world model view

– Dependency injection

– setSourceModel(new FakeModel);
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● KDE ItemViews test suite

– Fake source model (interpreter pattern)

– Fake selection model

– ProxyModelTest

– ModelSpy
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● KDE ItemViews

– KSelectionProxyModel

– KDescendantsProxyModel

– KReparentingProxyModel

● KDE ItemViews test suite

– Fake source model (interpreter pattern)

– Fake selection model

– ProxyModelTest

– ModelSpy



  

Testing Model-View Implementations

● Unit test execution

– Multiple executions

– Configurable tests for configurable proxies

– Individually executable

– Re-usable
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● Summary

– Dependency injection

– Simplify complex systems

– 1,000's of tests

– Re-usable

– kdelibs/kdeui/tests/proxymodeltestapp
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