

Testing Qt Model-View Implementations

Stephen Kelly – July 2010

Testing Model-View Implementations

● Designing testable code

● High-level Model-View design

● Test-drivers and mock objects

● Unit test execution

● KDE ItemViews library

Testing Model-View Implementations

● Designing testable code

– Motivation

Testing Model-View Implementations

● Designing testable code

– Motivation

Class under testClass under test

DependencyDependency

Test driverTest driver DependencyDependency

DependencyDependency

Testing Model-View Implementations

● Designing testable code

– Motivation

Class under testClass under test

DependencyDependency

Test driverTest driver

DependencyDependency

DependencyDependency

Testing Model-View Implementations

● Designing testable code

– Motivation

– Abstraction

Class under testClass under test

Fake DependencyFake Dependency

Test driverTest driver

Fake DependencyFake Dependency

Fake DependencyFake Dependency

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

ModelModelViewView

DelegateDelegate

SelectionsSelections

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

ModelModelViewView

DelegateDelegate

SelectionsSelections

Object
store

Object
store

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

ModelModelViewView

DelegateDelegate

SelectionsSelections

Fake
Object
store

Fake
Object
store

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

ModelModelTest
driver
Test
driver

Fake
Object
store

Fake
Object
store

Testing Model-View Implementations

● Test drivers and mock objects

– Real-world model view

EMail ModelEMail Model

Email view

Testing Model-View Implementations

● Test drivers and mock objects

– Real-world model view

EMail ModelEMail ModelTest DriverTest Driver

Testing Model-View Implementations

● Test drivers and mock objects

– Real-world model view

– Dependency injection

EMail ModelEMail ModelTest DriverTest Driver

Fake DataFake Data

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

– Abstraction

ProxyProxyViewView ModelModel

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

– Abstraction

ProxyProxyViewView ModelModel

Testing Model-View Implementations

● High-level Model-View design

– Separation of concerns

– Abstraction

ViewView ModelModel

Testing Model-View Implementations

● Test drivers and mock objects

– Real-world model view

– Dependency injection

ProxyProxyViewView ModelModel

Testing Model-View Implementations

Test driverTest driver Fake ModelFake ModelProxyProxy

● Test drivers and mock objects

– Real-world model view

– Dependency injection

– setSourceModel(new FakeModel);

Testing Model-View Implementations

● KDE ItemViews test suite

– Fake source model (interpreter pattern)

– Fake selection model

– ProxyModelTest

– ModelSpy

Testing Model-View Implementations

● KDE ItemViews

– KSelectionProxyModel

– KDescendantsProxyModel

– KReparentingProxyModel

● KDE ItemViews test suite

– Fake source model (interpreter pattern)

– Fake selection model

– ProxyModelTest

– ModelSpy

Testing Model-View Implementations

● Unit test execution

– Multiple executions

– Configurable tests for configurable proxies

– Individually executable

– Re-usable

Testing Model-View Implementations

● Summary

– Dependency injection

– Simplify complex systems

– 1,000's of tests

– Re-usable

– kdelibs/kdeui/tests/proxymodeltestapp

Testing Model-View Implementations

Questions
&

Answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

